【题目】已知函数().
(1)写出函数的值域,单调区间(不必证明);
(2)是否存在实数使得的定义域为,值域为?若存在,求出实数的取值范围;若不存在,请说明理由.
【答案】(1)当时,若, 单调递减; , 递减的;值域为.当时,在和内是单调递增的.此时值域为.
(2).
【解析】试题分析:
(1)由对数函数的性质可求得函数的定义域,在定义域内讨论的单调性,结合对数函数与复合函数的性质可得的单调区间,同时得值域;(2)根据函数的单调性知当时有 ,可看成为方程的两个根,且,再根据二次方程根的分布知识可得的范围,同理时,有 ,则有,两式相减得: ,不合题意,从而得出结论.
试题解析:
(1) ,定义域为: ,
且, , ,则为奇函数;
当时,若, 单调递增,则单调递减;同理, , 也是递减的;此时值域为.
当时, 在和内是单调递增的,所以是单调递增的.此时值域为.
(2)当,因为定义域为, 在定义域内两个子区间上是单调递减的,
则有 ,可看成为方程的两个根,且,又根据,则有对称轴,
有两个根在,需满足,解得: ;
当,因为定义域为, 是单调递增的,
则有 ,则有,两式相减得: ,不满足题意,所以..
科目:高中数学 来源: 题型:
【题目】学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A菜.用an , bn分别表示在第n个星期选A的人数和选B的人数,若a1=300,则a20=( )
A.260
B.280
C.300
D.320
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上的点到两个焦点的距离之和为,短轴长为,直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)若直线与圆相切,探究是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,三棱柱中,侧面 底面, ,且,O为中点.
(Ⅰ)证明: 平面;
(Ⅱ)求直线与平面所成角的正弦;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线与圆相交于不同的两点.
(1)求线段的中点的轨迹的方程;
(2)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为+=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 ()的焦距为4,左、右焦点分别为,且 与抛物线: 的交点所在的直线经过.
(Ⅰ)求椭圆的方程;
(Ⅱ)过 的直线 与交于两点,与抛物线无公共点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.
(1)估计该技术指标值平均数;
(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com