精英家教网 > 高中数学 > 题目详情
椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为     (   )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆,长轴在轴上,若焦距为4,则等于
A.4B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在直角坐标系xoy中,已知三点
以A、B为焦点的椭圆经过C点,
(1) 求椭圆方程;
(2) 设点D(0,1),是否存在不平行于x轴的直线l,与椭圆交于不同的两点M、N,使
若存在。求出直线l斜率的取值范围;
⑶对于y轴上的点P(0,n),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使
,试求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(1)已知椭圆的焦点为,点在椭圆上,求它的方程 (2)已知双曲线顶点间的距离为6,渐近线方程为,求它的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知椭圆=1(a>b>0)过点(1,),离心率为,左、右焦点分别为F1、F2. 点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2, 证明:=2;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分14分)
设椭圆的左右焦点分别为是椭圆上的一点,,坐标原点到直线的距离为
(1)求椭圆的方程;
(2)设是椭圆上的一点,过点的直线轴于点,交轴于点,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分) 如图,已知椭圆C,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(I)是否存在,使对任意,总有成立?若存在,求出所有的值;
(II)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在轴上的椭圆的离心率为,则="(   " )
A        B.        C.         D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


已知是椭圆的长轴,若把线段五等份,过每个分点作的垂线,分别与椭圆的上半部分相交于C、D、E、G 四点,设是椭圆的左焦点,则的值是
A.15                B. 16              C.18                   D.20

查看答案和解析>>

同步练习册答案