精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥中,底面是边长为1的菱形,分别为的中点.

1)证明:直线平面

2)求异面直线所成角的大小;

3)求点到平面的距离.

【答案】(1)证明见解析(2)(3)

【解析】

(1)的中点,构造平行四边形,再根据线面平行的判定定理完成证明;

(2)根据平行可知异面直线所成的角即为或其补角,然后根据长度进行求解;

(3)根据线面平行将问题转化为到平面的距离,然后作出在平面内的射影,根据长度即可计算出到平面的距离,即可求解出点到平面的距离.

1)取的中点,连接.则四边形为平行四边形,

,又∵平面平面

平面.

2)∵

为异面直线所成的角(或其补角)

于点,连接.

平面,∴,∵,∴.

.

所以异面直线所成的角为.

3)∵平面,∴点和点到平面的距离相等.

连接,过点于点

,∴平面,∴

又∵,∴平面

线段的长就是点到平面的距离,与点到平面的距离相等

.

所以点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合,且下列三个关系:中有且只有一个正确,则函数的值域是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在等腰梯形中,分别为的中点 中点,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中.

(1)证明:

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)ABC分割为面积相等的两部分,b的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误的是(

A.一条直线和直线外一点确定一个平面

B.平行于同一平面的两个不同平面平行

C.若直线不平行平面,则在平面内不存在与平行的直线

D.如果平面不垂直平面,那么平面内一定不存在直线垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)求证:图2中,平面平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

在其定义域上单调递减,求的取值范围;

存在两个不同极值点,且,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率

2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)设a,b∈M,证明:|ab|+1>|a|+|b|.

查看答案和解析>>

同步练习册答案