精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的焦点在x轴上,焦距为,实轴长为2

(1)求双曲线的标准方程与渐近线方程。

(2)若点 在该双曲线上运动,且 ,求以 为相邻两边的平行四边形 的顶点 的轨迹.

【答案】(1)双曲线的方程为 ,渐近线方程为 (2)

【解析】试题分析:(1)根据焦距为 可得由实轴长为 可得从而可得于是可得双曲线的标准方程与渐近线方程;(2)设点 的坐标为 ,点 的坐标为 ,则线段 的中点 的坐标为 根据平行四边形的性质可得 所以 代入双曲线方程得结果.

试题解析:(1)由题意可知,所以,所以双曲线的方程为

,渐近线方程为

(2)设点 的坐标为 ,点 的坐标为

则线段 的中点 的坐标为

由平行四边形的性质,点 也是线段 的中点,

所以有

因此 可用 表示,得

又由于 在曲线 上,因此,

①代入②,得

因为平行四边形不可能有两个以上的顶点在一条直线上,

所以动点 的轨迹是除去两点 的曲线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,准线为,三个点 中恰有两个点在上.

(1)求抛物线的标准方程;

(2)过的直线交 两点,点上任意一点,证明:直线 的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线 的右焦点为 ,右顶点为 ,( 为原点)

(1)求双曲线 的方程;

(2)若直线 与双曲线恒有两个不同的交点 ,且,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知短轴长为2的椭圆直线的横、纵截距分别为,且原点到直线的距离为

1)求椭圆的方程;

2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点, 且为坐标原点)?若存在,写出该圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案