精英家教网 > 高中数学 > 题目详情
已知抛物线,直线截抛物线C所得弦长为.
(1)求抛物线的方程;
(2)已知是抛物线上异于原点的两个动点,记试求当取得最小值时的最大值.
(1)(2)

试题分析:解:(1)联立


                      6(分)
       7(分)

        9(分)
时,此时      10(分)不妨设(其中为直线的倾斜角)当且仅当,即时等号成立.
故当时,的最大值为          14(分)
点评:主要是考查了直线与抛物线的位置关系的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线C:,(为参数)的普通方程为               (     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线和点为抛物线上的点,则满足的点有( )个。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为
(1)求的直角坐标方程;
(2)直线为参数)与曲线C交于两点,与轴交于,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,点为该抛物线上的动点,又点的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (mm0),点P的轨迹加上MN两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点ABAB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求y轴上的截距的变化范围.

查看答案和解析>>

同步练习册答案