分析 (1)利用奇函数的定义,即可得出结论;
(2)f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{1}{2}$$•\frac{-{2}^{x}+1}{{2}^{x}+1}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$∈(-$\frac{1}{2}$,$\frac{1}{2}$),不等式f(x)>log9(2c-1)有解,可得$\frac{1}{2}$>log9(2c-1),即可求c的取值范围.
解答 解:(1)函数的定义域为R,
f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{1}{2}$$•\frac{-{2}^{x}+1}{{2}^{x}+1}$,f(-x)=$\frac{1}{2}•\frac{-{2}^{-x}+1}{{2}^{-x}+1}$=-f(x),
∴函数f(x)是奇函数;
(2)f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{1}{2}$$•\frac{-{2}^{x}+1}{{2}^{x}+1}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$∈(-$\frac{1}{2}$,$\frac{1}{2}$)
∵不等式f(x)>log9(2c-1)有解,
∴$\frac{1}{2}$>log9(2c-1),
∴0<2c-1<3,
∴$\frac{1}{2}<c<2$.
点评 本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7\sqrt{2}}{10}$ | B. | -$\frac{7\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com