精英家教网 > 高中数学 > 题目详情
2.已知α∈($\frac{π}{2}$,π),且sinα=$\frac{3}{5}$.
(Ⅰ)求tan(α-$\frac{π}{4}$)的值;
(Ⅱ)求$\frac{sin2α-cosα}{1+cos2α}$的值.

分析 (Ⅰ)由已知利用同角三角函数基本关系式可求cosα,tanα的值,利用两角和的正切函数公式即可得解.
(Ⅱ)利用倍角公式化简后,代入即可求值得解.

解答 解:(Ⅰ)∵α∈($\frac{π}{2}$,π),且sinα=$\frac{3}{5}$.
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
∴tan(α-$\frac{π}{4}$)=$\frac{tanα-1}{1+tanα}$=$\frac{-\frac{3}{4}-1}{1-\frac{3}{4}}$=-7.
(Ⅱ)$\frac{sin2α-cosα}{1+cos2α}$=$\frac{2sinαcosα-cosα}{2co{s}^{2}α}$=$\frac{2×\frac{3}{5}×(-\frac{4}{5})-(-\frac{4}{5})}{2×(-\frac{4}{5})^{2}}$=-$\frac{1}{8}$.

点评 本题主要考查了同角三角函数基本关系式,两角和的正切函数公式,倍角公式的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.底面边长为2,高为3的正三棱锥的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且DE=2AE,CF=2BF.如果对于常数λ,在正方形ABCD的四条边上,有且只有6个不同的点P使得$\overrightarrow{PE}•\overrightarrow{PF}=λ$成立,那么λ的取值范围是(  )
A.(0,7)B.(4,7)C.(0,4)D.(-5,16)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
6699
79xy
(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x+y的值;
(Ⅱ)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a≥b的概率;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.sin$\frac{5π}{4}$=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a为实数,函数f(x)=x2-2ax.
(Ⅰ)当a=1时,求f(x)在区间[0,2]上的值域;
(Ⅱ)设函数g(x)=|f(x)|,t(a)为g(x)在区间[0,2]上的最大值,求t(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校4000学生全部参加了“抗战知识普及大赛”,现随机抽取40名学生的成绩(均为整数)整理后画出的频率分布直方图如图所示,其中第六、二、三、四小组的人数依次构成等差数列,请视察图形,回答下列问题:
(1)分别求第二、三小组的频率;
(2)估计全校成绩在60分以上(包括60分)的学生共有多少人?
(3)样本中,从成绩在80分以上(包括80分)的学生中任选2人.
①写出这个试验的所有基本事件;
②求至少有1人成绩在90~100分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2+m,g(x)=($\frac{1}{2}$)x,若“任意x1∈[-1,3],存在x2∈[0,2],使f(x1)≥g(x2)”是真命题,则实数m的取值范围是m≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若点M到点F(0,2)的距离与到x轴的距离相等,且点Q满足$\overrightarrow{QM}=\overrightarrow{MF}$.
(1)求动点Q的轨迹C的方程;
(2)若点P(x0,y0)为圆x2+y2=1上一动点,过点P作圆的切线1与(1)中的曲线C相交于A、B两点(A、B在y轴的两侧),求平面图形OAFB面积的最小值.

查看答案和解析>>

同步练习册答案