精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求数列{an}的通项公式;
(2)设数列{bn}满足bn= ,且b2= ,证明:b1+b2++bn

【答案】
(1)解:由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,两式相减,得到an+2=qan+1(n≥1).

又由S2=qS1+1,得到a2=qa1

故an+1=qan对所有n≥1都成立.

所以数列{an}是首项为1,公比为q的等比数列,从而

由2a2,a3,a2+2成等差数列,可得2a3=3a2+2,即2q2=3q+2.

则(2q+1)(q﹣2)=0.

由已知,q>0,故q=2.

所以


(2)解:由(1)知,an=qn1

bn=

,q>0解得q=

因为1+q2n1>q2n1所以

于是b1+b2++bn>1+q+q2++qn1= = =

故b1+b2++bn


【解析】(1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,两式相减,得到an+2=qan+1(n≥1),即数列{an}是首项为1,公比为q的等比数列,求出q即可.(2)可得q= ,即 ,于是b1+b2++bn>1+q+q2++qn1= = =

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},对任意的k∈N* , 当n=3k时,an= ;当n≠3k时,an=n,那么该数列中的第10个2是该数列的第项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD的对角线AC=10,BD=6,M、N分别为AB、CD的中点,MN=7,则异面直线AC和BD所成的角等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1且an+1=an+2n+1,设数列{bn}满足bn=an﹣1,对任意正整数n不等式 均成立,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,其左顶点在圆上.

Ⅰ)求椭圆的方程;

直线交椭圆两点,设点关于轴的对称点为(点与点不重合),且直线轴的交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分别为PB,PC中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大小;
(Ⅲ)在BC上是否存在点E,使得EN⊥平面AMN?若存在,求 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时, x2+lnx< x3

查看答案和解析>>

同步练习册答案