【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差数列,求数列{an}的通项公式;
(2)设数列{bn}满足bn= ,且b2= ,证明:b1+b2++bn> .
【答案】
(1)解:由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,两式相减,得到an+2=qan+1(n≥1).
又由S2=qS1+1,得到a2=qa1.
故an+1=qan对所有n≥1都成立.
所以数列{an}是首项为1,公比为q的等比数列,从而 .
由2a2,a3,a2+2成等差数列,可得2a3=3a2+2,即2q2=3q+2.
则(2q+1)(q﹣2)=0.
由已知,q>0,故q=2.
所以 .
(2)解:由(1)知,an=qn﹣1.
bn= .
由 ,q>0解得q= .
因为1+q2(n﹣1)>q2(n﹣1)所以
于是b1+b2++bn>1+q+q2++qn﹣1= = =
故b1+b2++bn> .
【解析】(1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,两式相减,得到an+2=qan+1(n≥1),即数列{an}是首项为1,公比为q的等比数列,求出q即可.(2)可得q= ,即 ,于是b1+b2++bn>1+q+q2++qn﹣1= = = .
科目:高中数学 来源: 题型:
【题目】空间四边形ABCD的对角线AC=10,BD=6,M、N分别为AB、CD的中点,MN=7,则异面直线AC和BD所成的角等于( )
A.30°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1且an+1=an+2n+1,设数列{bn}满足bn=an﹣1,对任意正整数n不等式 均成立,则实数m的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,其左顶点在圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线交椭圆于两点,设点关于轴的对称点为(点与点不重合),且直线与轴的交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分别为PB,PC中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大小;
(Ⅲ)在BC上是否存在点E,使得EN⊥平面AMN?若存在,求 的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com