精英家教网 > 高中数学 > 题目详情
2.设$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

分析 直接利用分段函数的解析式求法函数值即可.

解答 解:$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=cos$\frac{π}{3}$+2f($\frac{13}{6}-1$)=$\frac{1}{2}$+4f($\frac{1}{6}$)=$\frac{1}{2}+4×$cos$\frac{π}{6}$=$\frac{1}{2}+2\sqrt{3}$.
故答案为:$\frac{1}{2}+2\sqrt{3}$.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.将函数y=$\sqrt{3}$sin2x的图象向右平移$\frac{π}{4}$个单位长度,再将所得图象的所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的图象所对应的函数解析式为(  )
A.y=$\sqrt{3}$sinxB.y=-$\sqrt{3}$cosxC.y=$\sqrt{3}$sin4xD.y=-$\sqrt{3}$cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={log_a}\frac{2-x}{2+x}$(a>0,且a≠1),且f(-1)=1,
(1)求a的值;
(2)求函数f(x)的定义域;
(3)判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$f(x)={log_2}(\frac{1+ax}{1-x})$,若$f(\frac{1}{3})=1$
(1)求f(x)的解析式并判断其奇偶性;
(2)当x∈[-1,0)时,求f(3x)的值域;
(3)已知函数$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=log${\;}_{\frac{1}{4}}}$(x2-2mx+3)在区间(-∞,1)上是增函数,则实数m的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:f(x)=ax2-ax-2
(1)?x∈R,使f(x)≤0恒成立,求实数a的取值范围;
(2)?x∈R,使f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,则cos2θ=$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.几何体的三视图如右图所示,则该几何体的体积为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4},\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案