精英家教网 > 高中数学 > 题目详情
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF平面ABC1D1
(2)求证:EF⊥B1C;
(3)求三棱锥VB1-EFC的体积.
(1)证明:连接BD1,如图,在△DD1B中,E、F分别为D1D,DB的中点,则
EFD1B
D1B?平面ABC1D1
EF?平面ABC1D1
⇒EF
平面ABC1D1
(2)
B1C⊥AB
B1C⊥BC1
AB,B1C?平面ABC1D1
AB∩BC1=B
B1C⊥平面ABC1D1
BD1?平面ABC1D1
B1C⊥BD1
EFBD1
⇒EF⊥B1C

(3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1CF=BF=
2

EF=
1
2
BD1=
3
B1F=
BF2+BB12
=
(
2
)
2
+22
=
6

B1E=
B1D12+D1E2
=
12+(2
2
)
2
=3

∴EF2+B1F2=B1E2即∠EFB1=90°,
VB1-EFC=VC-B1EF=
1
3
SB1EF•CF

=
1
3
×
1
2
•EF•B1F•CF
=
1
3
×
1
2
×
3
×
6
×
2
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=
1
2
PA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)求证OD平面PAB;
(Ⅱ)求直线OD与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
3
,AD=CD=1.
(1)求证:BD⊥AA1
(2)在棱BC上取一点E,使得AE平面DCC1D1,求
BE
EC
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在侧棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=
3
5
,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求三棱锥A1-B1CD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(Ⅰ)求证:DE平面PFB;
(Ⅱ)已知二面角P-BF-C的余弦值为
6
6
,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(单位:cm),E为PA的中点.
(1)证明:DE平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中AB=1,AA1=AD=2.点E为AB中点.
(1)求三棱锥A1-ADE的体积;
(2)求证:A1D⊥平面ABC1D1
(3)求证:BD1平面A1DE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是AB=2,BC=3的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.
(Ⅰ)求证:面PAD⊥面PAB.
(Ⅱ)求二面角P-CD-A的大小.

查看答案和解析>>

同步练习册答案