精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(Ⅰ)讨论的极值;

(Ⅱ)若曲线和曲线在点处有相同的切线,且当时,,求的取值范围 .

【答案】(Ⅰ)见解析;(Ⅱ).

【解析】

(Ⅰ)求出导函数,然后根据参数的取值判断出函数的单调性,进而得到极值.(Ⅱ)由两曲线的切线相同得,设,根据,解得.然后由,再根据两根的大小对函数的单调性进行分类讨论,通过分析是否满足题意可得所求参数的范围.

(Ⅰ)∵

①当时,恒成立,所以上单调递增,无极值.

②当时,由

且当时,单调递减;当时,单调递增.

所以当时,有极小值,且,无极大值.

③当时,由

且当时,单调递增;当时,单调递减.

所以当时,有极大值,且,无极小值.

综上所述,当时,无极值;

时,,无极大值;

时, ,无极小值.

(Ⅱ)由题意得

在点处有相同的切线,

,即,解得

由题意可得,解得

①当,即时,则

∴当时,单调递减;当时,单调递增,

上的最小值为,∴恒成立.

②当,即时,则

∴当时,上单调递增,

∴当时,,即恒成立.

③当,即时,

则有

从而当时,不可能恒成立.

综上所述的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为R上的偶函数,当时,恒成立,函数的一个周期内的图像与函数的图像恰好有两个公共点,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,点DEF分别为线段A1C1ABA1A的中点,A1AACBC,∠ACB90°.求证:

1DE∥平面BCC1B1

2EF⊥平面B1CE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,.从数列中选出项并按原顺序组成的新数列记为,并称为数列项子列.例如数列的一个项子列.

1)试写出数列的一个项子列,并使其为等差数列;

2)如果为数列的一个项子列,且为等差数列,证明:的公差满足

3)如果为数列的一个项子列,且为等比数列,证明:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),以椭圆内一点为中点作弦,设线段的中垂线与椭圆相交于 两点.

(Ⅰ)求椭圆的离心率;

(Ⅱ)试判断是否存在这样的,使得 在同一个圆上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,左、右焦点分别是,为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点

1)求椭圆的方程;

2)设椭圆,为椭圆上任意一点,过点的直线交椭圆两点,射线交椭圆于点

①求的值;

②令,的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy中,点A坐标为(2,0),点B坐标为(4,3),点C坐标为(1,3),且tR.

(1) CMAB,求t的值;

(2) 0≤ t ≤1时,求直线CM的斜率k和倾斜角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点

Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;

Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

C. 垂直于同一条直线的两条直线相互垂直

D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行

查看答案和解析>>

同步练习册答案