精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*满足关系式2Sn=3an-3.数列{bn}是公差不为0的等差数列,且b1=2,b2,b1,b3成等比数列.
(1)求数列{an}及{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn
【答案】分析:(1)当n≥2时,有2Sn-1=3an-1-3,2Sn=3an-3,两式相减,得an=3an-1(n≥2),由此能求出an=3n.由b2,b1,b3成等比数列,能求出bn
(2)设,由,利用错位相减法能求出数列{an•bn}的前n项和Tn
解答:解:(1)当n≥2时,有2Sn-1=3an-1-3,①
又2Sn=3an-3,②
②-①得,2(Sn-Sn-1)=2an=3an-3an-1
即an=3an-1(n≥2).
又当n=1时,2a1=3a1-3,
∴a1=3.
故数列{an}为等比数列,且公比q=3.
∴an=3n
∵b2,b1,b3成等比数列,
,即4=(2+d)(2+2d)
解得,d=-3或d=0(舍去)
∴bn=2-3(n-1)=-3n+5.
(2)设
,①
,②
②-①得,
=-6+33+34+…+3n+1+(-3n+5)×3n+1
=
=

点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意迭代法和错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2.已知数列{an}的通项公式是an=
2n
3n+1
(n∈N*,n≤8)
,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中数学 来源:江西省赣县中学2011届高三适应性考试数学理科试题 题型:013

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

例2.已知数列{an}的通项公式是数学公式,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)数学公式(2)数学公式

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.1 数列定义与通项(解析版) 题型:解答题

例2.已知数列{an}的通项公式是,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步练习册答案