A. | $\frac{{7\sqrt{2}}}{10}$ | B. | $-\frac{{7\sqrt{2}}}{10}$ | C. | $\frac{{\sqrt{2}}}{10}$ | D. | $-\frac{{\sqrt{2}}}{10}$ |
分析 由同角三角函数基本关系可得sinα,然后利用两角和与差的余弦来求$cos(α-\frac{π}{4})$的值.
解答 解:∵$cosα=\frac{3}{5}$,$α∈(\frac{3π}{2},2π)$,
∴sinα=-$\frac{4}{5}$,
∴$cos(α-\frac{π}{4})$=cosαcos$\frac{π}{4}$+sinαsin$\frac{π}{4}$=$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$-$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$.
故选:D.
点评 本题考查两角和与差的三角函数,同角三角函数关系的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 如果直线m∥平面α,直线n?α内,那么m∥n | |
B. | 如果平面α⊥平面β,任取直线m?α,那么必有m丄β | |
C. | 若直线m∥平面α,直线n∥平面α,则m∥n | |
D. | 如果平面a外的一条直线m垂直于平面a内的两条相交直线,那么m⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com