精英家教网 > 高中数学 > 题目详情
已知方程3-x-lgx=0的根所在的区间为(k,k+1),k∈N*,则k=
2
2
分析:利用根的存在性定理进行判断区间端点处的符合即可.
解答:解:由方程3-x-lgx=0,令f(x)=3-x-lgx,
因为f(2)=3-2-lg2=1-lg2>0,
f(3)=3-3-lg3=-lg3<0.
所以根据根的存在性定理可知函数f(x)=3-x-lgx,在区间(2,3)内存在零点,
即k=2.
故答案为:2.
点评:本题主要考查函数零点的判断,利用根的存在性定理是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天河区三模)已知函数f(x)=
1+lg(x-1),x>1
g(x),x<1
的图象关于点P对称,且函数y=f(x+1)-1为奇函数,则下列结论:
(1)点P的坐标为(1,1);
(2)当x∈(-∞,0)时,g(x)>0恒成立;
(3)关于x的方程f(x)=a,a∈R有且只有两个实根.
其中正确结论的题号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知函数f(x)=(
1
2x-1
)•x2-sinx+a(a为常数)
,且f(loga1000)=3,则f(lglg2)=3;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a∈(-4,0);
③关于x的方程(
1
2
)x=lga
有非负实数根,则实数a的取值范围是(1,10);
④如图,三棱柱ABC-A1B1C1中,E、F分别是AB,AC的中点,平面EB1C1F将三棱柱分成几何体AEF-AB1C1和B1C1-EFCB两部分,其体积分别为V1,V2,则V1:V2=7:5.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
2x
ax+b
,f(1)=0
,当x>0时,恒有f(x)-f(
1
x
)=lgx

(1)求f(x)的表达式;
(2)设不等式f(x)≤lgt的解集为A,且A⊆(0,4],求实数t的取值范围.
(3)若方程f(x)=lg(8x+m)的解集为∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:天河区三模 题型:单选题

已知函数f(x)=
1+lg(x-1),x>1
g(x),x<1
的图象关于点P对称,且函数y=f(x+1)-1为奇函数,则下列结论:
(1)点P的坐标为(1,1);
(2)当x∈(-∞,0)时,g(x)>0恒成立;
(3)关于x的方程f(x)=a,a∈R有且只有两个实根.
其中正确结论的题号为(  )
A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lg
2x
ax+b
,f(1)=0
,当x>0时,恒有f(x)-f(
1
x
)=lgx

(1)求f(x)的表达式;
(2)设不等式f(x)≤lgt的解集为A,且A⊆(0,4],求实数t的取值范围.
(3)若方程f(x)=lg(8x+m)的解集为∅,求实数m的取值范围.

查看答案和解析>>

同步练习册答案