精英家教网 > 高中数学 > 题目详情
4.求值:
(1)sin150°;
(2)tan1020°;
(3)sin(-$\frac{3}{4}$π);
(4)sin(-750°).

分析 由已知条件利用三角函数诱导公式求解.

解答 解:(1)sin150°=sin30°=$\frac{1}{2}$;
(2)tan1020°=tan(1080°-60°)=tan(-60°)=-tan60°=-$\sqrt{3}$;
(3)sin(-$\frac{3}{4}$π)=-sin$\frac{3π}{4}$=-sin($π-\frac{π}{4}$)=-sin$\frac{π}{4}$=-$\frac{\sqrt{2}}{2}$;
(4)sin(-750°)=-sin(720°+30°)=-sin30°=-$\frac{1}{2}$.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意诱导公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx,x∈($\frac{π}{2}$,3π),若方程f(x)=m有三个不同的实数根,且三个根α,β,γ(按从小到大排列)满足β2=αγ,则实数m的值可能是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cosα=m,且|m|<1,求sinα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线x2+y2cosα=1中的α满足90°<α<180°,则曲线为焦点在x轴上的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的离心率为$\sqrt{3}$,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.41(6)对应的二进制数是(  )
A.11001(2)B.10011(2)C.10101(2)D.10001(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方体ABCD-A1B1C1D1中,M为棱BB1的中点,则下列结论错误的是(  )
A.B1D∥平面MAC
B.B1D⊥平面A1BC1
C.二面角M-AC-B等于45°
D.异面直线BC1与AC所形成的角等于60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合S={1,2,…,1997},A={a1,a2,…,an}是S的子集,且具有下列性质:
“A中任意两个不同元素的和不能被117整除.”试确定A中元素个数的最大值并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=10x+1的值域是(  )
A.(-∞,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案