精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex+
1
ex

(Ⅰ)求函数f(x)的最小值;
(Ⅱ)若对所有x≤0都有f(x)≥ax+1,求实数a的取值范围.
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(Ⅰ)利用导数判断函数的单调性,进而可求出函数的最小值;
(Ⅱ)令g(x)=f(x)-ax-1=e-x+(e-a)x-1,即g(x)≥g(0)=0成立,分类讨论并利用导数判断函数的单调性,即可得出结论.
解答: 解:(Ⅰ)由已知得f'(x)=-e-x+e,…(1分)
令f'(x)>0得x>-1;令f'(x)<0得x<-1.
因此,函数f (x)在(-∞,-1]上单调减函数,在[-1,+∞)上是单调增函数,…(5分)
当x=-1时,f(x)的有极小值也是最小值,f(x)min=0…(6分)
(Ⅱ)令g(x)=f(x)-ax-1=e-x+(e-a)x-1,
则g'(x)=-e-x+(e-a),g(0)=0.…(8分)
(1)当e-a≤0,即a≥e时,g'(x)=-e-x+(e-a)<0,g(x)在(-∞,0]是减函数,
因此当x≤0时,都有g(x)≥g(0)=0,即f(x)-ax-1≥0,f(x)≥ax+1;…(10分)
(2)当a<e时,令g'(x)<0得x<-ln(e-a);令g'(x)>0得x>-ln(e-a),
因此函数g(x)在(-∞,-ln(e-a)]上是减函数,在[-ln(e-a),+∞)上是增函数.
由于对所有x≤0都有f(x)≥ax+1,即g(x)≥g(0)=0成立,
因此-ln(e-a)≥0,e-a≤1,a≥e-1,又a<e,
所以e-1≤a≤e.…(13分)
综上所述,a的取值范围是[e-1,+∞).…(14分)
点评:本题主要考查利用导数研究函数的单调性、极值、最值等知识,考查学生恒成立问题的等价转化思想及分类讨论思想的运用能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A,B,C为△ABC三内角,则“cosA+sinA=cosB+sinB”是“∠C=90°”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

当x>0时,函数f(x)=
12
x
+3x的最小值是(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线与椭圆
x2
4
+y2=1有相同的焦点F1、F2,P在双曲线的右支上,且PF2⊥F1F2,∠PF1F2=30°,则双曲线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某次飞行表演中,一架直升从空中A处测出前下方海岛两侧海岸P、Q处的俯角分别是45°和30°(如右图所示,A、P、Q在同一平面内).
(1)若直升飞机在海拔800m的高度飞行,试计算这个海岛的宽度PQ.
(2)若地面观测者测得P、Q两海岸距离大约为600m,由此试估算出观测者甲(在P处)到飞机的直线距离(精确到100m).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线方程是y=
3
x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为(  )
A、x2-
y2
3
=1
B、
x2
3
-
y2
9
=1
C、
x2
4
-
y2
12
=1
D、
x2
9
-
y2
27
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2时,a的值为(  )
A、a=3,a=-1
B、a=3
C、a=-1
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是偶函数,定义x≥0时,f(x)=
x(3-x),0≤x≤3
(x-3)(a-x),x>3

(1)求f(-2);
(2)当x<-3时,求f(x)的解析式;
(3)设函数y=f(x)在区间[-5,5]上的最大值为g(a),试求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过3次而接通电话的概率为(  )
A、
9
10
B、
3
10
C、
1
8
D、
1
10

查看答案和解析>>

同步练习册答案