精英家教网 > 高中数学 > 题目详情
已知|
a
|=4,|
b
|=3,
a
b
的夹角θ为60°,求:
(1)(
a
+2
b
)•(2
a
-
b
)的值;
(2)|2
a
-
b
|的值.
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:(1)运用向量的数量积的定义和性质:向量的平方即为模的平方,计算即可得到;
(2)运用向量的平方即为模的平方,化简计算即可得到所求值.
解答: 解:(1)由|
a
|=4,|
b
|=3,
a
b
的夹角θ为60°,
a
2
=16,
b
2
=9
a
b
=4×3cos600=6

(
a
+2
b
)•(2
a
-
b
)=2
a
2
+3
a
b
-2
b
2
=2×16+3×6-2×9=32

(2)由|2
a
-
b
|2=(2
a
-
b
)2=4
a
2
-4
a
b
+
b
2
=4×16-4×6+9=49

|2
a
-
b
|=7
点评:本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四边形ABCD中,若
AC
=
AB
+
AD
,则四边形ABCD一定是(  )
A、正方形B、菱形
C、矩形D、平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2|x|.
(1)求函数f(x)的定义域及f(-
2
)的值;
(2)判断函数f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lgx+x的零点所在的区间是(  )
A、(-10,-
1
10
B、(
1
10
,1)
C、(1,10)
D、(0,
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alog2x+blog3x+2且f(
1
2015
)=4,则f(2015)的值为(  )
A、-4B、2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cosB=bcosC.(1)求角B的大小,
(2)若a=3,△ABC的面积为
3
3
2
,求
BA
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a3=0,Sn是数列{an}的前n项和,则下列式子成立的是(  )
A、S3=0
B、S4=0
C、S5=0
D、S9=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4x
-
λ
2x-1
+3(-1≤x≤2).
(1)若λ=
3
2
时,求函数f(x)的值域;
(2)若函数f(x)的最小值是1,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,(2
a
-3
b
)•(2
a
+
b
)=-12.
(1)求
a
b
的夹角θ;                 
(2)求|
a
+2
b
|的值.

查看答案和解析>>

同步练习册答案