精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.

【答案】
(1)解:由于直线x=4与圆C1不相交;

∴直线l的斜率存在,设l方程为:y=k(x﹣4)

圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2

∴d= =1

d= 从而k(24k+7)=0即k=0或k=﹣

∴直线l的方程为:y=0或7x+24y﹣28=0


(2)解:设点P(a,b)满足条件,

由题意分析可得直线l1、l2的斜率均存在且不为0,

不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0

则直线l2方程为:y﹣b=﹣ (x﹣a)

∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,

∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等

=

整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|

∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5

因k的取值有无穷多个,所以

解得

这样的点只可能是点P1 ,﹣ )或点P2(﹣


【解析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2 ,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S= ,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设入射光线沿直线y=2x+1射向直线y=x,则被y=x反射后,反射光线所在的直线方程是(
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(单位:元)

8

8.2

8.4

8.6

8.8

9

销量y(单位:万件)

90

84

83

80

75

68


(1)现有三条y对x的回归直线方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,记录如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.(用样本数据特征来说明.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

(Ⅰ)判断函数内零点的个数,并说明理由;

(Ⅱ),使得不等式成立,试求实数的取值范围;

(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论函数的单调性;

(2)若有两个极值点,记过点的直线的斜率为,问:是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案