精英家教网 > 高中数学 > 题目详情

有下列命题:
①设集合M={x|0<x≤3},N={x|0<x≤2},则“aM”是“a∈N”的充分而不必要条件;
②命题:“若aM,则bM”的逆否命题是:若bM,则aM
③若pq是假命题,则pq都是假命题;
④命题P:“x0∈R,xx0-1>0”的否定P:“x∈R,x2x-1≤0”.
其中真命题的序号是________.

②④

解析试题分析:本题考查的知识点是,判断命题真假.(1)考查了集合间的关系,在集合M中任取一个x值,看其是否在集合N中,反之,在集合N中任取一个x值,判断其是否又在集合M中;(2)考查命题的逆否命题,把原命题的结论取否定作为条件,条件取否定作为结论;(3)考查复合命题的真假判断,两个命题中只要有一个假命题,则p∧q为假命题;(4)考查特称命题的否定,注意特称命题的否定全称命题的格式.解:对于①,a在集合M中取值为3,但3不在集合N中,有a∈M,但a∉N,所以“a∈M”是“a∈N”的不充分条件,所以①不正确;对于②,把原命题的结论取否定作为条件,条件取否定作为结论,所以,命题“若a∈M,则b∉M”的逆否命题是:若b∈M,则a∉M,所以命题②正确;
对于③,假若p,q中有一个为真命题,则p∧q也是假命题,所以,命题③不正确;对于④,特称命题的否定是全称命题,所以命题P:“x0∈R,xx0-1>0”的否定¬P:“?x∈R,x2-x-1≤0”正确正确,故②④
考点:命题的真假判断
点评:本题考查了命题的真假判断与运用,解答的关键是熟练基本概念,掌握有关格式,如特称命题否定的格式 特称命题P:?x0∈M,p(x0),否定¬p:?x∈M,¬p(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

下列结论中是真命题的是__________(填序号).
①f(x)=ax2+bx+c在[0,+∞)上是增函数的一个充分条件是-<0;
②已知甲:x+y≠3,乙:x≠1或y≠2,则甲是乙的充分不必要条件;
③数列{an}(n∈N*)是等差数列的充要条件是Pn是共线的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

命题“”的否定是_________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知,若的必要不充分条件,
则实数的取值范围是______________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知命题:“函数是周期函数且是奇函数”,则
①命题是“”命题;                ②命题是真命题;
③命题非:函数不是周期函数且不是奇函数;
④命题非是假命题.其中,正确叙述的个数是                          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

”是“”的    条件.(在“充分不必要”、“必要不充分”、“既不充分又不必要”、“充要”选择并进行填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

命题“若,则”的否命题为                     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列四个命题:
①在中,若,则
为等差数列的前项和,若,则
③数列的前n项和为且满足,则
④数列满足,则的最小值为
其中正确的命题序号     (注:把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

命题“x∈R,”的否定是                         

查看答案和解析>>

同步练习册答案