(本题满分14分)
如图,已知是棱长为的正方体,点在上,点在上,且.
(1)求证:四点共面;(4分)
(2)若点在上,,点在上,,垂足为,求证:平面;(4分)
(3)用表示截面和侧面所成的锐二面角的大小,求.(4分
(1)略
(2)略
(3);
【解析】(1)如图,在上取点,使,连结,
,则,.
因为,,所以四边形,都为平行四边形.
从而,.
又因为,所以,故四边形是平行四边形,
由此推知,从而.
因此,四点共面.
(2)如图,,又,所以,
.
因为,所以为平行四边形,从而.
又平面,所以平面.
(3)如图,连结
因为,,
所以平面,得.
于是是所求的二面角的平面角,即.
因为,所以
,
.
解法二:
(1)建立如图所示的坐标系,则,,,
所以,故,,共面.
又它们有公共点,所以四点共面.
(2)如图,设,则,
而,由题设得,
得.
因为,,有,
又,,所以,
,从而,.
故平面.
(3)设向量截面,
于是,.
而,,得,
,解得,,所以.
又平面,
所以和的夹角等于或(为锐角).
于是.
故.
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com