精英家教网 > 高中数学 > 题目详情
甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是,其余每局比赛甲队获胜的概率都是.设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.
【答案】分析:(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;
(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.
解答:解:(1)甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜
①3:0,概率为P1=(3=
②3:1,概率为P2=C2×(1-)×=
③3:2,概率为P3=C2×(1-2×=
∴甲队3:0,3:1,3:2胜利的概率:
(2)乙队得分X,则X的取值可能为0,1,2,3.
由(1)知P(X=0)=P1+P2=
P(X=1)=P3=
P(X=2)=C(1-2×(2×=
P(X=3)=(1-3+C(1-2×()×=
则X的分布列为
X321
P
E(X)=3×+2×+1×+0×=
点评:本题主要考查了相互独立事件的概率乘法公式,以及离散型随机变量的期望与分布列,同时考查了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•山东)甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是
1
2
,其余每局比赛甲队获胜的概率都是
2
3
.设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(山东卷解析版) 题型:解答题

甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是。假设各局比赛结果相互独立。

(Ⅰ)分别求甲队以胜利的概率;

(Ⅱ)若比赛结果为求,则胜利方得分,对方得分;若比赛结果为,则胜利方得分、对方得分。求乙队得分的分布列及数学期望。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

  甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率是 .假设每局比赛结果互相独立.
 (1)分别求甲队以3:0,3:1,3:2胜利的概率 
  (2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为

3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两支排球队进行一场比赛,比赛采用五局三胜制,即首先赢得三场比赛的队获胜且比赛结束,已知在每一局比赛中甲队战胜乙队的概率是0.6,且各局比赛之间没有影响,现在已知乙队已经赢了第一局,则最终甲队获胜的概率是       

查看答案和解析>>

同步练习册答案