精英家教网 > 高中数学 > 题目详情
5.某汽车销售公司同时在甲、乙两地销售一种品牌车,利润(单位:万元)分别为${L_1}=-{x^2}+21x$和L2=2x(其中销售量单位:辆).若该公司在两地一共销售20辆,则能获得的最大利润为(  )
A.130万元B.130.25万元C.120万元D.100万元

分析 由题意,设公司在甲地销售x辆(0≤x≤20,x为正整数),则在乙地销售(15-x)辆,公司获得利润L=-x2+21x+2(20-x),利用二次函数求最值即可.

解答 解:设甲地销售量为x辆,则乙地销售量为15-x 辆,获得的利润为L(x)万元,则
L(x)=-x2+21x+2(20-x)(0≤x≤20,x∈N+
=-x2+19x+40,
所以,当x=9或或x=10时,利润最大,最大利润为130万元,
故选:A

点评 本题考查了学生将实际问题转化为数学问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点M(2,0),离心率为$\frac{1}{2}$.A,B是椭圆C上两点,且直线OA,OB的斜率之积为-$\frac{3}{4}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若射线OA上的点P满足|PO|=3|OA|,且PB与椭圆交于点Q,求$\frac{|BP|}{|BQ|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.
(1)求实数m的值;
(2)设$g(x)=f(x)-\frac{a}{2}{x^2}-x+a({a∈R})$在定义域内有两个不同的极值点x1,x2,求a的取值范围;
(3)已知λ>0,在(2)的条件下,若不等式${e^{1+λ}}<{x_1}•{x_2}^λ({{x_1}<{x_2}})$恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)-k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令$g(x)=\frac{f(x)}{x}$,若函数F(x)=g(2x)-r2x在x∈[-1,1]上有零点,求实数r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…在第100个括号内的最后一个数字为501.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ x-3≤0\end{array}\right.$则z=x+2y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.实数x,y满足(x-y)2+y2=2,则x2+y2的最小值是3-$\sqrt{5}$,最大值是3+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1-an=3n+2n+1求数列的通项公式.

查看答案和解析>>

同步练习册答案