【题目】已知圆C过原点且与相切,且圆心C在直线上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.
【答案】(1)(2) x=2或4x-3y-2=0.
【解析】
试题(1)由题意圆心到直线的距离等于半径, 再利用点到直线的距离公式解出圆心坐标和半径即可.(2)由题知,圆心到直线l的距离为1.分类讨论:当l的斜率不存在时,l:x=2显然成立 ;若l的斜率存在时, 利用点到直线的距离公式,解得k ;综上,直线l的方程为x=2或4x-3y-2=0.
(1)由题意设圆心,则C到直线的距离等于,, 解得, ∴其半径
∴圆的方程为(6分)
(2)由题知,圆心C到直线l的距离. (8分)
当l的斜率不存在时,l:x=2显然成立 (9分)
若l的斜率存在时,设,由得,解得,
∴. (11分)
综上,直线l的方程为x=2或4x-3y-2=0. (12分)
科目:高中数学 来源: 题型:
【题目】等边的边长为,点,分别是,上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接,(如图(2)).
(1)求证:平面;
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.
(1)求直方图的的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.
(3)估计居民月用水量的中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:经过点,A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com