精英家教网 > 高中数学 > 题目详情

【题目】已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面积.

【答案】
(1)解:在△ABC中,∵c2+b2+cb=a2,∴c2+b2﹣a2=﹣bc,

∴由余弦定理可得:cosA= = =﹣

∵A∈(0,π),

∴A=


(2)解:∵由(1)可知:cosA= = =﹣

又∵a=2 ,b+c=4,

=﹣ ,解得:bc=4,

∴△ABC的面积S= bcsinA= =


【解析】(1)由已知可得c2+b2﹣a2=﹣bc,利用余弦定理可得cosA=﹣ ,结合范围A∈(0,π),可求A的值.(2)由(1)可知cosA= =﹣ ,从而可求bc的值,利用三角形面积公式即可计算得解.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形, ,且 的中点。

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的单调区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程;
(3)求证:对任意的正数a与b,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2+4x﹣lnx.
(1)当a=﹣3时,求f(x)的单调区间;
(2)当a≠0时,若f(x)是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)设函数 ,且有两个不同的零点

①求实数的取值范围; ②求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|log2x≤1},则A∩B=(
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x,y满足约束条件 ,且向量 =(3,2), =(x,y),则 的取值范围(
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数x,y满足
(1)若z=2x+y,求z的最大值;
(2)若z=x2+y2 , 求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是菱形, ,平面平面

在棱上运动.

(1)当在何处时, 平面

(2)已知的中点, 交于点,当平面时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案