精英家教网 > 高中数学 > 题目详情
11.设点P是边长为2的正三角形ABC的三边上的动点,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的取值范围为[-$\frac{9}{8}$,2].

分析 以AB中点为坐标原点,建立如图所示的直角坐标系,可得A(-1,0),B(1,0),C(0,$\sqrt{3}$),讨论P在AB,BC,CA上,分别设P的坐标,可得向量PA,PB,PC的坐标,由向量的坐标表示,化为二次函数在闭区间上的最值问题,即可得到所求取值范围.

解答 解:以AB中点为坐标原点,建立如图所示的直角坐标系,
可得A(-1,0),B(1,0),C(0,$\sqrt{3}$),
当P在线段AB上,设P(t,0),(-1≤t≤1),
$\overrightarrow{PA}$=(-1-t,0),$\overrightarrow{PB}$=(1-t,0),$\overrightarrow{PC}$=(-t,$\sqrt{3}$),
即有$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=(-1-t,0)•(1-2t,$\sqrt{3}$)
=(-1-t)(1-2t)+0×$\sqrt{3}$=2t2+t-1=2(t-$\frac{1}{4}$)2-$\frac{9}{8}$,
由-1≤t≤1可得t=$\frac{1}{4}$取得最小值-$\frac{9}{8}$,t=-1时,取得最大值0;
当P在线段CB上,设P(m,$\sqrt{3}$(1-m)),(0≤m≤1),
$\overrightarrow{PA}$=(-1-m,$\sqrt{3}$(m-1)),$\overrightarrow{PB}$=(1-m,$\sqrt{3}$(m-1)),$\overrightarrow{PC}$=(-m,$\sqrt{3}$m),
即有$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=(-1-m,$\sqrt{3}$(m-1))•(1-2m,$\sqrt{3}$(2m-1))
=(-1-m)(1-2m)+$\sqrt{3}$(m-1)×$\sqrt{3}$(2m-1)=2(2m-1)2
由0≤m≤1可得m=$\frac{1}{2}$取得最小值0,m=0或1时,取得最大值2;
当P在线段AC上,设P(n,$\sqrt{3}$(1+n)),(-1≤n≤0),
$\overrightarrow{PA}$=(-1-n,-$\sqrt{3}$(1+n)),$\overrightarrow{PB}$=(1-n,-$\sqrt{3}$(1+n)),$\overrightarrow{PC}$=(-n,-$\sqrt{3}$n),
即有$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=(-1-n,-$\sqrt{3}$(1+n))•(1-2n,-$\sqrt{3}$(1+2n))
=(-1-n)(1-2n)+$\sqrt{3}$(1+n)×$\sqrt{3}$(1+2n)=8n2+10n+2=8(n+$\frac{5}{8}$)2-$\frac{9}{8}$,
由-1≤n≤0可得n=-$\frac{5}{8}$取得最小值-$\frac{9}{8}$,n=0时,取得最大值2;
综上可得$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的取值范围是[-$\frac{9}{8}$,2].
故答案为:[-$\frac{9}{8}$,2].

点评 本题考查向量数量积的坐标表示,考查坐标法的运用,同时考查分类讨论和转化思想,转化为二次函数在闭区间上的最值问题是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设点P为有公共焦点F1、F2的椭圆M和双曲线Γ的一个交点,$cos∠{F_1}P{F_2}=\frac{4}{5}$,椭圆M的离心率为e1,双曲线Γ的离心率为e2.若e2=2e1,则e1=$\frac{{\sqrt{130}}}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为$-\sqrt{3}$,则|PF|=(  )
A.$4\sqrt{3}$B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=$\sqrt{3}$,A=60°,B=45°,则b的长为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数a,b,c满足1<b<a<2,0<c<$\frac{1}{8}$,则关于x的方程ax2+bx+c=0(  )
A.在区间(-1,0)内没有实数根
B.在区间(-1,0)内有一个实数根,在(-1,0)外有一个实数根
C.在区间(-1,0)内有两个相等的实数根
D.在区间(-1,0)内有两个不相等的实数根

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:解答题

如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB的中点,已知=a,=b,试用a、b分别表示

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

为了得到函数的图像,只需把函数的图像

A.向左平行移动个单位

B.向右平行移动个单位

C.向左平行移动个单位

D.向右平行移动个单位

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:填空题

,则满足不等式的m的取值范围为___________。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l过抛物线y2=2px(p>0)的焦点F(1,0),交抛物线于M,N两点.
(Ⅰ)写出抛物线的标准方程及准线方程;
(Ⅱ)O为坐标原点,直线MO、NO分别交准线于点P,Q,求|PQ|的最小值.

查看答案和解析>>

同步练习册答案