【题目】为了调查某款电视机的寿命,研究人员对该款电视机进行了相应的测试,将得到的数据分组:,,,,,并统计如图所示:
并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款电视机 | 不愿意购买该款电视机 | 总计 | |
男性 | 800 | 1000 | |
女性 | 600 | ||
总计 | 1200 |
(1)根据图中的数据,试估计该款电视机的平均寿命;
(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;
(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.
参考公式及数据:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)该款电视机的平均寿命约为7.76年; (2)在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关.; (3).
【解析】
(1)先由频率分布直方图算出各组数据的频率,再用各组的频率乘以该组数据的中间值,求和即得到平均数。
(2)先完善表中数据,由表中数据计算的观测值,再进行判断。
(3)由频率分布直方图可知电视机寿命不低于四年的概率为,列出分布列再求期望。
(1)
,
故该款电视机的平均寿命约为7.76年.
(2)依题意,完善表中的数据如下表所示:
愿意购买该款电视机 | 不愿意购买该款电视机 | 总计 | |
男性 | 800 | 200 | 1000 |
女性 | 400 | 600 | 1000 |
总计 | 1200 | 800 | 2000 |
计算得的观测值为.
故能在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关.
(3)依题意,,
故,,,
,.
故X的分布列为
X | 0 | 1 | 2 | 3 | 4 |
P |
.
科目:高中数学 来源: 题型:
【题目】已知长为3的线段的两端点,分别在轴和轴上移动,.
(1)求点的轨迹的方程.
(2)过作互相垂直的两条直线分别与轨迹交于,和,,设中点为,中点为,试探究直线是否过定点?若是,求出该定点;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是正方形,底面,,、、分别是棱、、的中点,对于平面截四棱锥所得的截面多边形,有以下三个结论:
①截面的面积等于;
②截面是一个五边形;
③截面只与四棱锥四条侧棱中的三条相交.
其中,所有正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在之间为“体质优秀”,在之间为“体质良好”,在之间为“体质合格”,在之间为“体质不合格”.现从这两个年级中各随机抽取7名学生,测试成绩如下:
其中m,n是正整数.
(Ⅰ)若该校高一年级有280学生,试估计高一年级“体质优秀”的学生人数;
(Ⅱ)若从高一年级抽取的7名学生中随机抽取2人,记X为抽取的2人中为“体质良好”的学生人数,求X的分布列及数学期望;
(Ⅲ)设两个年级被抽取学生的测试成绩的平均数相等,当高二年级被抽取学生的测试成绩的方差最小时,写出m,n的值.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,过点且不过点的直线与椭圆交于,两点,直线与直线交于点.
(Ⅰ)若垂直于轴,求直线的斜率;
(Ⅱ)试判断直线与直线的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,点E在BD上,EA=EB=EC=ED,BDCD,△ACD为正三角形,点M,N分别在AE,CD上运动(不含端点),且AM=CN,则当四面体C﹣EMN的体积取得最大值时,三棱锥A﹣BCD的外接球的表面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com