精英家教网 > 高中数学 > 题目详情

【题目】如图,射线均为笔直的公路,扇形区域(含边界)是规划的生态文旅园区,其中分别在射线.经测量得,扇形的圆心角(即)为、半径为千米.根据发展规划,要在扇形区域外修建一条公路,分别与射线交于两点,并要求与扇形弧相切于点不与重合).(单位:弧度),假设所有公路的宽度均忽略不计.

1)试将公路的长度表示为的函数;

2)已知公路每千米的造价为万元,问建造这样一条公路,至少要投入多少万元?

【答案】1其中.2万元.

【解析】

(1)根据与扇形弧相切于点,可得,在中,由,根据三角函数的定义得,同理在中,,从而得到.

(2)由(1)知,若造价最小,则MN最小,而MN变形转化为,只要求得最大值即可.

1)因为与扇形弧相切于点,所以.中,因为

所以,在中,,所以

所以,其中.

2

因为,所以,∴时,取最小值

∴建造这样一条公路,至少要投入万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数,且在上单调递增.

(1)求证:上单调递增;

(2)若不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)若直线分别经过定点,求定点的坐标;

(2)是否存在一个定点,使得的交点到定点的距离为定值?如果存在,求出定点的坐标及定值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,交于一点,除以外的其余各棱长均为2.

作平面与平面的交线,并写出作法及理由

求证:平面平面

若多面体的体积为2,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调递减区间;

(Ⅱ)若关于的方程有且仅有一个实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位,得到的图象关于轴对称,则( )

A. 函数的周期为 B. 函数图象关于点对称

C. 函数图象关于直线对称 D. 函数上单调

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)设

①若,求函数的零点;

②若函数存在零点,求的取值范围.

(2)设,若对任意恒成立,试求的取值范围.

查看答案和解析>>

同步练习册答案