精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和${S_n}={n^2}-4n+1$,则a1+a2+a3+…+a10=61.

分析 根据数列的前n项和公式,令n=10代入即可得到结论.

解答 解:∵数列{an}的前n项和${S_n}={n^2}-4n+1$,
∴a1+a2+a3+…+a10=S10=102-4×10+1=100-40+1=61,
故答案为:61

点评 本题考查了数列的前n项和的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.△ABC的内角A、B、C所对的边为a、b、c,则下列命题正确的是②③.
①若A<B,则 cos2A<cos2B       ②若ab>c2,则C$<\frac{π}{3}$
③若a+b>2c,则 C$<\frac{π}{3}$          ④若(a+b)c<2ab,则C>$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在圆x2+y2-4x-4y-2=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(  )
A.5$\sqrt{2}$B.10$\sqrt{2}$C.15$\sqrt{2}$D.20$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2-3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是(  )
A.$\frac{{3\sqrt{2}-4}}{2}$B.$\frac{{3\sqrt{3}-4}}{2}$C.$\frac{{2\sqrt{2}-4}}{2}$D.$\frac{{2\sqrt{3}-4}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足${a_1}=1,{a_{n+1}}=\frac{1}{2}{a_n}+1(n∈N*)$,通过计算a1,a2,a3,a4可猜想an=$\frac{{{2^n}-1}}{{{2^{n-1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$,则函数z=2x+y的最大值为(  )
A.12B.$\frac{32}{5}$C.3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴,曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C2:ρ=$\frac{1}{sin(θ+45°)}$;
(1)曲线C1,C2是否有公共点,为什么?
(2)将曲线C1向右移动m个单位,使得C1与C2是交于A,B两点,|AB|=$\sqrt{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“若实数a满足a≤3,则a2<9”的否命题是真命题(填“真”、“假”之一).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点O为直线l外任一点,点A、B、C都在直线l上,且$\overrightarrow{OC}=3\overrightarrow{OA}+t\overrightarrow{OB}$,则实数t=-2.

查看答案和解析>>

同步练习册答案