【题目】某企业对设备进行技术升级改造,为了检验改造效果,现从设备改造后生产的大量产品中抽取了100件产品作为样本,检测一项质量指标值,统计整理为如图所示的频率分布直方图:
(1)估计该企业所生产产品的质量指标的平均数和中位数(中位数保留一位小数);
(2)若产品的质量指标在内,则该产品为残次品,生产并销售一件残次品该企业损失1万元;若产品的质量指标在范围内,则该产品为特优品,生产一件特优品该企业获利3万元.把样本中的残次品和特优品取出合并在一起,在从中任取2件产品进行销售,那么该企业收入为多少万元的可能性最大?
【答案】(1)17.08,17.1;(2)2万元.
【解析】
(1)根据频率分布直方图,由每组的中间值乘以该组的频率,再求和,即可得出平均值;由中位数两侧频率之和均为,根据题中数据,即可求出结果;
(2)先由题意得,在这100件产品中,残次品有2件,设为,特优品有4件,设为;用列举法,分别列举出“这6件产品中随机抽取2件”,“抽到2件残次品”,“抽到1件残次品”,“抽到2件特优品”对应的基本事件,基本事件个数比即为所求概率,比较概率大小,即可得出结果.
(1)由频率分布直方图可得估计平均数为:
;
设中位数为,则易知中位数,
所以,解得,
即产品的质量指标的中位数约为17.1.
(2)由频率分布直方图可知在这100件产品中,残次品有2件,设为,特优品有4件,设为.从这6件产品中随机抽取2件包含以下基本事件:
,共15个基本事件.
若抽到2件残次品,该企业损失2万元,即收入为万元,该事件包含1个基本事件,则概率为
若抽到1件残次品,1件特优品,该企业收入2万元,该事件包含8个基本事件:
则概率为.
若抽到2件特优品,该企业收入6万元,其概率为
综上可知,该企业收入2万元的可能性最大,为
科目:高中数学 来源: 题型:
【题目】(5分)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有微机台,分别放在个房间,各房间开门钥匙互不相同.某期培训班有学员人(),每晚恰有人进机房实习操作,为保证每人一台机,至少应准备多少把钥匙分给这个学员,使得每晚不论哪个人进机房,都能用自己分到的钥匙打开一间机房的门进去练习,并按分得钥匙少的人先开门的原则,能保证每人恰可得到一个房间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,BC∥AD,AB⊥BC,∠ADC=45°,PA⊥平面ABCD,AB=AP=1,AD=3.
(1)求异面直线PB与CD所成角的大小;
(2)求点D到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.
(1)求函数的解折式;
(2)在中,角满足,且其外接圆的半径,求的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com