精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 平面.

(1)求证: 平面

(2)若为线段的中点,且过三点平面与线段交于点,确定的位置,说明理由;

并求三棱锥的高.

【答案】(1)证明见解析;(2)答案见解析 .

【解析】试题分析:

(1)由题意可证得 ,则平面.

(2) 的中点,由几何关系可知:点为过三点的平面与线段的交点,结合棱锥的体积公式可得三棱锥的高为.

试题解析:

(1)在直角梯形中,

,所以,即

平面,所以,又,故平面.

(2)的中点,

因为的中点, 的中点,所以,且

,所以,所以四点共面,

所以点为过三点的平面与线段的交点,

因为平面 的中点,所以到平面的距离

,所以

有题意可知,在直角三角形中,

在直角三角形中, ,所以.

设三棱锥的高为,解得

故三棱锥的高为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),其中a>0且a≠1,设h(x)=f(x)﹣g(x)
(1)求函数h(x)的定义域,判断h(x)的奇偶性并说明理由
(2)解不等式h(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax,(e为自然对数的底数). (Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对任意实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|x<﹣4或x>2}
(1)若m=﹣2,求A∩(RB);
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,P,Q分别是AA1 , B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1
(2)若AB=AA1 , BC=3,AC1=3,BC1= ,求证:平面ABC1⊥平面AA1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点. (Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.
(1)求f( )的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1内的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD的体积最大值是(
A.36
B.12
C.24
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a,球的半径为R.设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan(α+β)的值是

查看答案和解析>>

同步练习册答案