【题目】已知焦点在轴上的椭圆的中心是原点,离心率为双曲线离心率的一半,直线被椭圆截得的线段长为.直线: 与轴交于点,与椭圆交于两个相异点,且.
(1)求椭圆的方程;
(2)是否存在实数,使?若存在,求的取值范围;若不存在,请说明理由.
【答案】(Ⅰ) ;(Ⅱ) 或或.
【解析】试题分析:(Ⅰ)设出椭圆的标准方程,利用离心率、四边形的周长进行求解;(Ⅱ)利用平面向量的线性运算得到的关系,联立直线与椭圆的方程,得到关于的一元二次方程,利用椭圆的对称性、平面向量的坐标运算和判别式进行求解.
试题解析:(Ⅰ)根据已知设椭圆的方程为,焦距为,
由已知得,∴.
∵以椭圆的长轴和短轴为对角线的四边形的周长为,
∴.
∴椭圆的方程为.
(Ⅱ)根据已知得,由,得.
∴.∵,∴,
若,由椭圆的对称性得,即.
∴能使成立.
若,则,解得.
设,由得,
由已知得,即.
且.…10分
由得,即.∴,
∴,即.
当时, 不成立.∴,
∵,∴,即.
∴,解得或.
综上述,当或或时, .
科目:高中数学 来源: 题型:
【题目】(12分)在数列中,对于任意,等式
成立,其中常数.
(Ⅰ)求的值;
(Ⅱ)求证:数列为等比数列;
(Ⅲ)如果关于n的不等式的解集为
,求b和c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(Ⅰ)若直线l不经过第二象限,求实数a的取值范围;
(Ⅱ)若直线l与两坐标轴围成的三角形面积等于2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y关于x的线性回归方程;
(2)预测售出8箱水的收益是多少元?
附:回归直线的最小二乘法估计公式分别为: =, =﹣,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在区间上的函数的图象为, 、,且为图象上的任意一点, 为坐标原点,当实数满足时,记向量,若恒成立,则称函数在区间上可在标准下线性近似,其中是一个确定的正数.
(1)设函数在区间上可在标准下线性近似,求的取值范围;
(2)已知函数的反函数为,函数,( ),点、,记直线的斜率为,若,问:是否存在,使成立?若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | 0.4 | |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
(1)补全频率分布直方图并求 的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com