精英家教网 > 高中数学 > 题目详情
设an=-n2+10n+11,则数列{an}从首项到第
10或11
10或11
项的和最大.
分析:解不等式an≥0,得1≤n≤11且a11=0.由此讨论数列{an}各项的符号,可得{an}从首项到第10项的和与首项到第11和相等,达到最大值.
解答:解:∵an=-n2+10n+11,
∴解不等式an≥0,即-n2+10n+11≥0,得-1≤n≤11
∵n∈N+,∴1≤n≤11,
可得从a1,a2,…a10的值都是非负数,a11=0,而从n≥12时,an<0
因此,数列{an}从首项到第10项的和与首项到第11和相等,达到最大值.
故答案为:10或11
点评:本题给出数列的通项公式,求它的前n项和达到最大值时项数n的值.着重考查了一元二次不等式的解法和数列的函数特性等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设an=-n2+10n+11,则数列{an}从首项到第(  )项的和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

an=-n2+10n+11,则数列{an}的最大项为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设an=-n2+10n+11,则数列{an}从首项到第几项的和最大(    )

A.10          B.11           C.10或11               D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

设an=-n2+10n+11,则数列{an}从首项到第______项的和最大.(    )

A.10           B.11           C.10或11            D.12

查看答案和解析>>

同步练习册答案