精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2,若在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,则实数k的取值范围为__

【答案】

【解析】

由函数的奇偶性、周期性可作y=f(x)的图象,又直线y=k(x+3)过定点(﹣3,0),数形结合计算可得解.

由定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2

可得函数f(x)在区间[﹣3,3]的图象如图所示,在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,

等价于y=f(x)的图象与直线y=k(x+3)在区间[﹣3,3]内有6个交点,又y=k(x+3)过定点(﹣3,0),

观察图象可知实数k的取值范围为:

故答案为:(0,]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知球O为三棱锥SABC的外接球, ,则球O的表面积是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中正确的有______.(填序号)①数据22334673的众数与中位数相等;②数据13579的方差是数据26101418的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。

(1)求椭圆的方程;

(2)是椭圆上的两个不同点,若直线的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,教育部发文确定新高考改革正式启动,湖南、广东、湖北等8省市开始实行新高考制度,从2018年下学期的高一年级学生开始实行.为了适应新高考改革,某校组织了一次新高考质量测评,在成绩统计分析中,高二某班的数学成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

1)求该班数学成绩在的频率及全班人数;

2)根据频率分布直方图估计该班这次测评的数学平均分;

3)若规定分及其以上为优秀,现从该班分数在分及其以上的试卷中任取份分析学生得分情况,求在抽取的份试卷中至少有份优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an} 满足a1=a,=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.

(1)求数列{an} 的通项公式;

(2)设a=,c=,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是

1)求椭圆的方程;

2)已知点,问是否存在直线与椭圆交于两点,且,若存在,求出直线斜率的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是( ).

①“若,则,中至少有一个不小于2”的逆命题是真命题;

②命题“设,若,则”是一个真命题;

③命题,,则的必要不充分条件;

④命题“,使得”的否定是:“,均有”.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的长轴长为4,左、右顶点分别为,经过点的动直线与椭圆相交于不同的两点(不与点重合).

(1)求椭圆的方程及离心率;

(2)求四边形面积的最大值;

(3)若直线与直线相交于点,判断点是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)

查看答案和解析>>

同步练习册答案