精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期和单调递减区间;
(2)求函数在区间上的最小值和最大值,并求出取得最值时的值。

(1)最小正周期;(2),此时
,此时

解析试题分析:(1)的最小正周期 --------3分
,即时,单调递减,所以得单调递减区间是----------3分
(2),则
,所以,此时,即
,此时,即------------6分
考点:函数的性质:周期性、单调性和最值。
点评:求三角函数的周期、单调区间、最值等,一般用化一公式化为的形式。在求函数的单调区间和最值对应的x的值时时一定要注意的正负。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,恒成立,求整数的最大值;
(Ⅲ)试证明:)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数 
(Ⅰ)设在区间的最小值为,求的表达式;
(Ⅱ)设,若函数在区间上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知对于任意实数满足,当时,.
(1)求并判断的奇偶性;
(2)判断的单调性,并用定义加以证明;
(3)已知,集合,
集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数,设
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。
(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知R,函数
(1)求的单调区间;
(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数,其中,设
(1)判断的奇偶性,并说明理由;
(2)若,求使成立的x的集合。

查看答案和解析>>

同步练习册答案