精英家教网 > 高中数学 > 题目详情
(2012•四川)椭圆
x2
4
+
y2
3
=1
的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是
3
3
分析:先画出图象,结合图象得到△FAB的周长最大时对应的直线所在位置.即可求出结论.
解答:解:设椭圆的右焦点为E.如图:
由椭圆的定义得:△FAB的周长:AB+AF+BF=AB+(2a-AE)+(2a-BE)=4a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,当AB过点E时取等号;
∴AB+AF+BF=4a+AB-AE-BE≤4a;
即直线x=m过椭圆的右焦点E时△FAB的周长最大;
此时△FAB的高为:EF=2.
此时直线x=m=c=1;
把x=1代入椭圆
x2
4
+
y2
3
=1
的方程得:y=±
3
2

∴AB=3.
所以:△FAB的面积等于:S△FAB=
1
2
×3×EF=
1
2
×3×2=3.
故答案为:3.
点评:本题主要考察椭圆的简单性质.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.解决本题的关键在于利用定义求出周长的表达式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)已知函数f(x)=cos2
x
2
-sin
x
2
cos
x
2
-
1
2

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若f(α)=
3
2
10
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)椭圆
x2
a2
+
y2
5
=1(a
为定值,且a>
5
)
的左焦点为F,直线x=m与椭圆相交于点A、B,△FAB的周长的最大值是12,则该椭圆的离心率是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)设函数f(x)=(x-3)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,xn
a
-1

④对某个正整数k,若xk+1≥xk,则xk=[
a
]

其中的真命题有
①③④
①③④
.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案