(本小题满分14分)
设(且),g(x)是f(x)的反函数.
(Ⅰ)设关于的方程求在区间[2,6]上有实数解,求t的取值范围;
(Ⅱ)当a=e(e为自然对数的底数)时,证明:;
(Ⅲ)当0<a≤时,试比较与4的大小,并说明理由.
本小题考产函数、反函数、方程、不等式、导数及其应用等基础知识,考察化归、分类整合等数学思想方法,以及推理论证、分析与解决问题的能力.
解:(1)由题意,得ax=>0
故g(x)=,x∈(-∞,-1)∪(1,+∞)
由得
t=(x-1)2(7-x),x∈[2,6]
则t'=-3x2+18x-15=-3(x-1)(x-5)
列表如下:
x | 2 | (2,5) | 5 | (5,6) | 6 |
t' | + | 0 | - | ||
t | 5 | ↗ | 极大值32 | ↘ | 25 |
所以t最小值=5,t最大值=32
所以t的取值范围为[5,32]……………………………………………………5分
(2)
=ln()
=-ln
令u(z)=-lnz2-=-2lnz+z-,z>0
则u'(z)=-=(1-)2≥0
所以u(z)在(0,+∞)上是增函数
又因为>1>0,所以u()>u(1)=0
即ln>0
即………………………………………………………………9分
(3)设a=,则p≥1,1<f(1)=≤3
当n=1时,|f(1)-1|=≤2<4
当n≥2时
设k≥2,k∈N *时,则f(k)=
=1+
所以1<f(k)≤1+
从而n-1<≤n-1+=n+1-<n+1
所以n<<f(1)+n+1≤n+4
综上所述,总有|-n|<4
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com