精英家教网 > 高中数学 > 题目详情

(本小题满分14分)

),g(x)是f(x)的反函数.

(Ⅰ)设关于的方程求在区间[2,6]上有实数解,求t的取值范围;

(Ⅱ)当aee为自然对数的底数)时,证明:

(Ⅲ)当0<a≤时,试比较与4的大小,并说明理由.

本小题考产函数、反函数、方程、不等式、导数及其应用等基础知识,考察化归、分类整合等数学思想方法,以及推理论证、分析与解决问题的能力.

解:(1)由题意,得ax>0

g(x)=x∈(-∞,-1)∪(1,+∞)

得 

t=(x-1)2(7-x),x∈[2,6]

t'=-3x2+18x-15=-3(x-1)(x-5)

列表如下:

x

2

(2,5)

5

(5,6)

6

t'

+

0

-

t

5

极大值32

25

所以t最小值=5,t最大值=32

所以t的取值范围为[5,32]……………………………………………………5分

(2)  

           =ln()

           =-ln

u(z)=-lnz2=-2lnzzz>0

u'(z)=-=(1-)2≥0

所以u(z)在(0,+∞)上是增函数

又因为>1>0,所以u()>u(1)=0

ln>0 

………………………………………………………………9分

(3)设a,则p≥1,1<f(1)=≤3

n=1时,|f(1)-1|=≤2<4

n≥2时

k≥2,kN *时,则f(k)= 

                        =1+

所以1<f(k)≤1+

从而n-1<n-1+n+1-n+1

所以nf(1)+n+1≤n+4

综上所述,总有|n|<4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案