【题目】如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC= AA1 , D是棱AA1的中点,DC1⊥BD.
(1)证明:DC1⊥面BCD;
(2)设AA1=2,求点B1到平面BDC1的距离.
【答案】
(1)证明:由题设知,三棱柱的侧面为矩形.
由于D是棱AA1的中点,故DC=DC1.
又AC= AA1,可得DC2+DC12=CC12,所以△C1DC是直角三角形,
∴C1D⊥DC.
而DC1⊥BD,DC∩BD=D,
所以DC1⊥面BCD
(2)解:由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1A1,所以CA,CB,CC1两两垂直.
以C为坐标原点, 的方向为x轴的正方向,建立如图所示的空间直角坐标系C﹣xyz.
由题意知B(0,1,0),D(1,0,1),C1(0,0,2),B1(0,1,2),
P( , ,2),
则 =(1,﹣1,1), =(﹣1,0,1), =(﹣ ,﹣ ,0),
=(0,﹣1,0)
设 =(x,y,z)是平面BDC1的法向量,则
可取 =(1,2,1).
设点B1到平面BDC1的距离为d,则d=| |= .
【解析】(1)在矩形ACC1A1中,利用勾股定理证明C1D⊥DC,由DC1⊥BD,DC∩BD=D能证明DC1⊥平面BDC;(2)建立空间直角坐标系,求出平面BDC1的法向量,即可求点B1到平面BDC1的距离.
【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn .
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x﹣1),g(x)=loga(3﹣x)(a>0且a≠1)
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log (3x2﹣ax+5)在[﹣1,+∞)上单调递减,则实数a的取值范围是( )
A.[﹣8,﹣6]
B.(﹣8,﹣6]
C.(﹣∞,﹣8)∪(﹣6,+∞)
D.(﹣∞,﹣6]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2为椭圆C: (a>b>0)的左、右焦点,M为椭圆C的上顶点,且|MF1|=2,右焦点与右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,且直线OA,OB的斜率kOA , kOB满足kOAkOB=﹣ ,求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,定直线,动点到点的距离与到直线的距离之比等于.
(1)求动点的轨迹的方程;
(2)设轨迹与轴负半轴交于点,过点作不与轴重合的直线交轨迹于两点,直线分别交直线于点.试问:在轴上是否存在定点,使得?若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ (a,b∈R)在点(1,f(1))处的切线方程为x﹣2y=0.
(1)求a,b的值;
(2)当x>1时,f(x)﹣kx<0恒成立,求实数k的取值范围;
(3)证明:当n∈N* , 且n≥2时, + + +…+ > .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com