精英家教网 > 高中数学 > 题目详情

(本题满分12分)探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函数在区间(0,1)上递减,问:
(1)函数在区间                  上递增.当               时,                 
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

(1)函数在区间       上递增.
     1          时,   3             . ………………6分
(2)由函数,(令),
显然函数有最小值3,又因为,
是偶函数,则取得最小值时   ………………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若上的最大值是,求的值;
(2)若对于任意,总存在,使得成立,求的取值范围; 
(3)若上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0且a≠1,
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若不等式的解集为(-1,3)。
(1)求的值;
(2)若函数上的最小值为1,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函的定义域;
(2)求证:函数是增函数;
(3)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数 
(1)当时,求函数的最大值和最小值;
(2)求实数的取值范围,使在区间上是单调减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求证f(x)为奇函数;
(Ⅲ)若f()+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)(本小题满分12分)已知y=f(x)是偶函数,当x>0时,
且当时,恒成立,求的最小值.

查看答案和解析>>

同步练习册答案