精英家教网 > 高中数学 > 题目详情
已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,1+
B.(1,
C.(-1,1+
D.(1,2)
【答案】分析:根据双曲线的对称性,得到等腰△ABE中,∠AEB为锐角,可得|AF1|<|EF1|,将此式转化为关于a、c的不等式,化简整理即可得到该双曲线的离心率e的取值范围.
解答:解:根据双曲线的对称性,得
△ABE中,|AE|=|BE|,
∴△ABE是锐角三角形,即∠AEB为锐角
由此可得Rt△AF1E中,∠AEF<45°,得|AF1|<|EF1|
∵|AF1|==,|EF1|=a+c
<a+c,即2a2+ac-c2>0
两边都除以a2,得e2-e-2<0,解之得-1<e<2
∵双曲线的离心率e>1
∴该双曲线的离心率e的取值范围是(1,2)
故选D.
点评:本题给出双曲线过一个焦点的通径与另一个顶点构成锐角三角形,求双曲线离心率的范围,着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•聊城一模)已知点F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,P是椭圆C上的一点,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面积为
3
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)点M的坐标为(
5
4
,0)
,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的k∈R,
MA
MB
是否为定值?若是求出这个定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青州市模拟)已知点F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,点P为椭圆上任意一点,P到焦点F2的距离的最大值为
2
+1
,且△PF1F2的最大面积为1.
( I)求椭圆C的方程.
( II)点M的坐标为(
5
4
,0)
,过点F2且斜率为k的直线L与椭圆C相交于A,B两点.对于任意的k∈R,
MA
MB
是否为定值?若是求出这个定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1,F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,点P为椭圆上任意一点,P到焦点F2(1,0)的距离的最大值为
2
+1.
(1)求椭圆C的方程.
(2)点M的坐标为(
5
4
,0),过点F2且斜率为k的直线l与椭圆C相交于A,B两点.对于任意的k∈R,
MA
MB
是否为定值?若是求出这个定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源:山东省期中题 题型:解答题

已知点F1,F2分别为椭圆C:(a>b>0)的左、右焦点,点P为椭圆上任意一点,P到焦点F2的距离的最大值为+1,且△PF1F2的最大面积为1。
(1)求椭圆C的方程。
(2)点M的坐标为,过点F2且斜率为k的直线L与椭圆C相交于A,B两点。对于任意的k∈R,是否为定值?若是求出这个定值;若不是说明理由。 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛十九中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知点F1,F2分别为椭圆C:的左右焦点,P是椭圆C上的一点,且的面积为
(Ⅰ)求椭圆C的方程;
(Ⅱ)点M的坐标为,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,对于任意的是否为定值?若是求出这个定值;若不是说明理由.

查看答案和解析>>

同步练习册答案