精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程为,曲线为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线轴围成的区域(不含边界)内,求的取值范围.

【答案】(1);(2)

【解析】

(1)消去参数,即可得到曲线的普通方程,根据极坐标与直角坐标的互化公式,即可化简得到曲线的直角坐标方程.

(2)根据直线与曲线有公共点,解得,再联立方程组,求得点的坐标,根据点在曲线内,列出不等式组,即可求解。

(1)曲线的普通方程为

曲线的直角坐标方程为.

(2)直线与曲线有公共点,则圆心到直线的距离为

,解得.

,得,即

又点在曲线内,所以,解得.

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线在点处的切线与直线垂直,求实数的值;

2)若恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】浙江省现行的高考招生制度规定除语、数、英之外,考生须从政治、历史、地理、物理、化学、生物、技术这7门高中学考科目中选择3门作为高考选考科目,成绩计入高考总分.已知报考某高校两个专业各需要一门科目满足要求即可,专业:物理、化学、技术;专业:历史、地理、技术.考生小李今年打算报考该高校这两个专业的选考方式有______ 种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的体积为,则三棱锥P-ABC表面积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+bx2+cx(xR),已知g(x)=f(x)﹣f′(x)是奇函数

(1)求b、c的值.

(2)求g(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求,并试估计这200盒产品的该项指标的平均值;

(Ⅱ)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.

①求产品该项指标值的优秀率;

②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知动直线的参数方程:,(为参数,) ,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若直线与曲线恰好有2个公共点时,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国改革开放以来经济发展迅猛,某一线城市的城镇居民20122018年人均可支配月收入散点图如下(年份均用末位数字减1表示).

1)由散点图可知,人均可支配月收入y(万元)与年份x之间具有较强的线性相关关系,试求y关于x的回归方程(系数精确到0.001),依此相关关系预测2019年该城市人均可支配月收入;

2)在20142018年的五个年份中随机抽取两个数据作样本分析,求所取的两个数据中,人均可支配月收入恰好有一个超过1万元的概率.

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两名蓝球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有下列结论:

9

8

5

2

8

9

2

1

3

0

1

2

①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数.

②甲最近五场比赛得分的平均数低于乙最近五场比赛得分的平均数.

③从最近五场比赛的得分看,乙比甲更稳定.

④从最近五场比赛的得分看,甲比乙更稳定.

其中所有正确结论的编号为(

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案