精英家教网 > 高中数学 > 题目详情

已知函数,曲线经过点
且在点处的切线为.
(1)求的值;
(2)若存在实数,使得时,恒成立,求的取值范围.

(1);(2).

解析试题分析:(1)利用条件“曲线经过点,且在点处的切线为”得到
以及,从而列出方程组求解的值;(2)利用参数分离法将问题等价转化为
在区间上恒成立,并构造新函数,转化为
利用导数求出函数在区间的最大值,从而可以求出实数的取值范围.
(1)
依题意,,即,解得
(2)由,得:
时, 
恒成立,当且仅当

(舍去),
;当
在区间 上的最大值为
所以常数的取值范围为.
考点:1.导数的几何意义;2.不等式恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)求证:函数在点处的切线与总有两个不同的公共点;
(2)若函数在区间上有且仅有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-3x2+2x
(1)在处的切线平行于直线,求点的坐标;
(2)求过原点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)当时,求函数的单调区间;
(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(3)若对任意恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点是曲线上不同的两点,点为线段的中点,过点轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在点处的切线与直线平行,求的值;
(2)求证函数上为单调增函数;
(3)设,且,求证:

查看答案和解析>>

同步练习册答案