精英家教网 > 高中数学 > 题目详情
12.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为(  )
A.-2B.-1C.1D.2

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$作出可行域如图,

化目标函数z=2x-y为y=2x-z.
由图可知,当直线y=2x-z过B时,直线在y轴上的截距最大,z有最小值为-1.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若直线l经过点$A(1,\sqrt{3})$和B(1,0),则直线l的倾斜角为(  )
A.B.60°C.90°D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式|x-1|>2的解为{x|x>3或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={1,3,5,7,9},N={x|2x<9},则M∩N=(  )
A.{1,3,5}B.{1,3}C.{1}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设若f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{x+{∫}_{0}^{a}3{t}^{2}dt,x≤0}\end{array}\right.$,f(f(1))=8,则a的值是(  )
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.废品率x%和每吨生铁成本y(元)之间的回归直线方程为$\stackrel{∧}{y}$=2x+256,这表明(  )
A.y与x的相关系数为2
B.y与x的关系是函数关系
C.废品率每增加1%,生铁成本每吨大约增加2元
D.废品率每增加1%,生铁成本大约增加258元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=cos(asinx)-sin(bcosx)没有零点,则a2+b2的取值范围是(  )
A.[0,1)B.[0,π2C.$[0\;,\;\frac{π^2}{4})$D.[0,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}(3a-1)x+4a,x<1\\-{x^2}+2ax+1,x≥1\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.(-∞,1]B.$[{\frac{1}{5},\frac{1}{3}})$C.$({-∞,\frac{1}{3}})$D.$[{\frac{1}{5},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ).
(1)若该函数的部分图象如图所示,其中A>0,ω>0,0<φ<π,则该函数f(x)的解析式为f(x)=2sin(2x+$\frac{2π}{3}$)
(2)若A=2,ω=2,φ=0,则该函数图象在区间[-$\frac{π}{4}$,$\frac{3π}{4}$]上与直线y=-2围成封闭图形面积为π.
(3)若A=2,ω>2,φ=$\frac{π}{3}$,且该函数图象整体在区间[0,$\frac{π}{2}$]上有且只有4条对称轴,则ω取值集合为6≤ω<8.

查看答案和解析>>

同步练习册答案