精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=\frac{{4-{2^x}}}{{1+{2^x}}}$,若存在实数a,b,x∈R,a≤f(x)≤b,则b-a的最小值为5.

分析 由y=$f(x)=\frac{{4-{2^x}}}{{1+{2^x}}}$,求得 2x=$\frac{4-y}{y+1}$>0,由此求得函数的值域,从而求得b-a的最小值.

解答 解:令y=$f(x)=\frac{{4-{2^x}}}{{1+{2^x}}}$,
求得 2x=$\frac{4-y}{y+1}$>0,
∴$\frac{y-4}{y+1}$<0,
解得-1<y<4,即-1<f(x)<4,
故函数f(x)的值域为(-1,4),
故b-a的最小值为4-(-1)=5,
故答案为:5.

点评 本题主要考查最值的求法,注意运用指数函数的值域和二次不等式的解法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②要得到函数y=sinx的图象,只需将函数$y=cos(x-\frac{π}{3})$的图象向左平移$\frac{π}{6}$个单位;
③若m≥-1,则函数$y={log_{\frac{1}{2}}}({x^2}-2x-m)$的值城为R;
④“a=1”是“函数f(x)=$\frac{{a-{e^x}}}{{1+a{e^x}}}$在定义域上是奇函数”的充分不必要条件;
⑤已知{an}为等差数列,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正值时,n=20.
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是AA1,CC1的中点,试判断四边形BED1F的形状,并计算其面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义在R上的增函数f(x)满足f(x)>0,且对于任意的m,n∈R都有f(m)•f(n)=f(m+n).
(1)求f(0)的值;
(2)求证$\frac{f(m)}{f(n)}$=f(m-n)(m,n∈R);
(3)若f(4)=4,且存在x∈[1,t](t>1)使得f(x2)≤$\frac{1}{8}$f(kx),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若sinAsinB十cosAcosB=1,则它是(  )三角形.
A.直角B.等腰C.等腰直角D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域和值域:
(1)y=tan(x+$\frac{π}{4}$);
(2)y=$\sqrt{\sqrt{3}-tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的不等式3ax2+2x-1>0在(2,+∞)上有解,则实数a的取值范围是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点F1,F2分别为双曲线x2-$\frac{{y}^{2}}{3}$=1的左,右焦点,点P为双曲线右支上的任意一点,则$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为(  )
A.8B.5C.4D.9

查看答案和解析>>

同步练习册答案