精英家教网 > 高中数学 > 题目详情
19.设a,b∈R,求证:a2+b2+$\frac{7}{4}$>ab+2a+$\frac{b}{2}$.

分析 通过变形可知(a2+b2+$\frac{7}{4}$)-(ab+2a+$\frac{b}{2}$)=$\frac{1}{2}$(2a2+2b2+$\frac{7}{2}$-2ab-4a-b)=$\frac{1}{2}$[(a-b)2+(a-2)2+(b-$\frac{1}{2}$)2-$\frac{3}{4}$],数形结合即得结论.

解答 证明:(a2+b2+$\frac{7}{4}$)-(ab+2a+$\frac{b}{2}$)
=$\frac{1}{2}$(2a2+2b2+$\frac{7}{2}$-2ab-4a-b)
=$\frac{1}{2}$[(a2-2ab+b2)+(a2-4a+4)+(${b}^{2}-b+\frac{1}{4}$)-$\frac{3}{4}$]
=$\frac{1}{2}$[(a-b)2+(a-2)2+(b-$\frac{1}{2}$)2-$\frac{3}{4}$],
而(a-b)2+(a-2)2+(b-$\frac{1}{2}$)2表示点P(2,$\frac{1}{2}$)到直线l:y=x的距离,
利用点到直线的距离公式可知d=$\frac{2-\frac{1}{2}}{\sqrt{2}}$=$\frac{3}{2\sqrt{2}}$,
∵$\frac{3}{2\sqrt{2}}$>$\frac{3}{4}$,
∴(a2+b2+$\frac{7}{4}$)-(ab+2a+$\frac{b}{2}$)>0,
∴a2+b2+$\frac{7}{4}$>ab+2a+$\frac{b}{2}$.

点评 本题考查不等式的证明,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3,4,5},集合A={2,3,4},B={1,4},则(∁UA)∪B为(  )
A.{1}B.{1,5}C.{1,4}D.{1,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.y=f(x)在(0,+∞)上是减函数,则f(a2-a+2)与f($\frac{7}{4}$)的大小关系是(  )
A.f(a2-a+2)≤f($\frac{7}{4}$)B.f(a2-a+2)≥f($\frac{7}{4}$)C.f(a2-a+2)=f($\frac{7}{4}$)D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x+$\frac{4}{x}$的值域是(  )
A.[4,+∞)B.(4,+∞)C.RD.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若0<x<$\frac{π}{2}$,则x与sinx的大小关系是(  )
A.x>sinxB.x<sinxC.x≥sinxD.x≤sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=1og22x+alog${\;}_{\frac{1}{4}}$(4x),x∈[1,4],当a=1时,求f(x)的最值;若f(x)的最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知m.n为正整数,实数x,y满足x+y=4($\sqrt{x+m}+\sqrt{y+n}$),若x+y的最大值为40,则m+n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x2+x-b2的零点个数是(  )
A.0B.1C.2D.无数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知方程|sinx|-ax=0在区间(0,+∞)上有且仅有两根x1,x2,且x1<x2,下列选项中正确的是(  )
A.x2=tanx2B.x1=tanx1C.(1+2x2)tan2x2=1D.(1+2x1)tanx1=1

查看答案和解析>>

同步练习册答案