精英家教网 > 高中数学 > 题目详情
设数列{an}满足:Sn=
an24
+n
,an>0.
(1)求{an}的表达式;
(2)将数列{an}依次按1项,2项,3项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b2010的值;
(3)如果将数列{an}依次按1项,2项,3项,…,m(m≥3)项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
分析:(1)由:Sn=
an2
4
+n
,可用an与Sn的关系求解;
(2)先由数列{an}将(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),转化为(2),(4,6),(8,10,12),(14),(16,18),(20,22,24),按照每一次循环记为一组.由于每一个循环含有3个括号的规律抽象出b3,b6,b8,,b2010,组成一个首项为b3,公差为36的等差数列.
(3)由“提出同(2)类似的问题((2)应当作为特例)”即研究:当n是m的整数倍时,求bn.按照(2)的思路解决.
解答:解:(1)当n=1时,S1=
a12
4
+1,a12-4a1+4=0
,解得a1=2,
当n≥2时,a n=S n-Sn-1=(
an2
4
+n)-(
an-12
4
+n-1)
,整理得(an+an-1-2)(an-an-1-2)=0,
所以an-an-1=2,或an+an-1=2(不合题意,舍去,否则a2n=0与已知矛盾),
∴数列{an}是等差数列,且公差为2,首项a1=2,从而an=2n.(5分)
(2)数列{an}依次按1项,2项,3项循环地分为(2),(4,6),(8,10,12),(14),(16,18),(20,22,24),,每一次循环记为一组.由于每一个循环含有3个括号,故b2009是第670组中第2个括号内各数之和.
由分组规律知,b3,b6,b8,,b2010,组成一个首项为b3=8+10+12=30,公差为d=36的等差数列.所以b2010=30+(670-1)×36=24114.(10分)
(3)当n是m的整数倍时,求bn的值.
数列{an}依次按1项、2项、3项,,m项循环地分为(2),(4,6),(8,10,12),,(m2-m+2,m2-m+4,m2-m+6,,m2+m);(m2+m+2)(m2+m+4,m2+m+6),,(2m2+2,2m2+4,,2m2+2m),(2m2+2m+2),
第m组,第2m组,,第km(k∈N*)组的第1个数,第2个数,,第m个数分别组成一个等差数列,其首项分别为m2-m+2,m2-m+4,m2-m+6,,m2+m公差均为m(m+1)
则第m组、第2m组,,第km组,的各数之和也组成一个等差数列,其公差为m2(m+1)
第m组的m个数之和为
m[(m2-m+2)+(m2+m)]
2
=m3+m

∴当n=km时,bn=bkm=m3+m+(k-1)m2(m+1).(16分)
点评:本题考查通项和前n项和之间的关系,由数列构造新数列和转化数列的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=0,an+1=can3+1-c,n∈N*,其中c为实数
(1)证明:an∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];
(2)设0<c<
1
3
,证明:an≥1-(3c)n-1,n∈N*
(3)设0<c<
1
3
,证明:
a
2
1
+
a
2
2
+…
a
2
n
>n+1-
2
1-3c
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4x+m
(m>0)
,当x1、x2∈R且x1+x2=1时,总有f(x1)+f(x2)=
1
2

(1)求m的值;
(2)设数列an满足an=f(
0
n
)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)
,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=a,an+1=can+1-c,n∈N*其中a,c为实数,且c≠0
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设a=
1
2
,c=
1
2
,bn=n(1-an),n∈N*,求数列{bn}的前n项和Sn
(Ⅲ)若0<an<1对任意n∈N*成立,求实数c的范围.(理科做,文科不做)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=
5
6
,且an=
1
3
an-1+
1
3
(n∈N*,n≥2)
(1)求证:数列{an-
1
2
}为等比数列,并求数列{an}的通项an
(2)求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设n∈N*,不等式组
x>0
y>0
y≤-nx+2n
所表示的平面区域为Dn,把Dn内的整点(横、纵坐标均为整数的点)按其到原点的距离从近到远排列成点列:(x1,y1),(x2,y2),…,(xn,yn
(1)求(xn,yn);
(2)设数列{an}满足a1=x1an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
),(n≥2)
,求证:n≥2时,
an+1
(n+1
)
2
 
-
an
n
2
 
=
1
n
2
 

(3)在(2)的条件下,比较(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
与4的大小.

查看答案和解析>>

同步练习册答案