【题目】已知O是平面直角坐标系的原点,双曲线.
(1)过双曲线的右焦点作x轴的垂线,交于A、B两点,求线段AB的长;
(2)设M为的右顶点,P为右支上任意一点,已知点T的坐标为,当的最小值为时,求t的取值范围;
(3)设直线与的右支交于A,B两点,若双曲线右支上存在点C使得,求实数m的值和点C的坐标.
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面是边长为的菱形,,是等边三角形,为的中点,.
(1)求证:;
(2)若在线段上,且,能否在棱上找到一点,使平面平面?若存在,求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
年龄x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收缩压单位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
请画出上表数据的散点图;
请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;的值精确到
若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱中,平面是线段上的动点,是线段上的中点.
(Ⅰ)证明:;
(Ⅱ)若,且直线所成角的余弦值为,试指出点在线段上的位置,并求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体的顶点、、分别在两两垂直的三条射线, , 上,则在下列命题中,错误的是( )
A. 是正三棱锥
B. 直线与平面相交
C. 直线与平面所成的角的正弦值为
D. 异面直线和所成角是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理过程是演绎推理的是( )
A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人
B. 由三角形的性质,推测空间四面体的性质
C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分
D. 在数列中,,可得,由此归纳出的通项公式
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线上一点,为的焦点.
(1)若,是上的两点,证明:,,依次成等比数列.
(2)过作两条互相垂直的直线与的另一个交点分别交于,(在的上方),求向量在轴正方向上的投影的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com