精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x+1)的定义域是[﹣1,3],则y=f(x2)的定义域是(
A.[0,4]
B.[0,16]
C.[﹣2,2]
D.[1,4]

【答案】C
【解析】解:∵函数y=f(x+1)的定义域是[﹣1,3],即﹣1≤x≤3,
∴0≤x+1≤4,则y=f(x)的定义域为[0,4],
由0≤x2≤4,解得﹣2≤x≤2.
∴y=f(x2)的定义域是[﹣2,2].
故选:C.
【考点精析】认真审题,首先需要了解函数的定义域及其求法(求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= cos2x+sin2(x+ ). (Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[﹣ )时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)讨论函数的单调性;

(2)记,设 为函数图象上的两点,且.

(i)当时,若 处的切线相互垂直,求证:

(ii)若在点 处的切线重合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中装有三个编号分别为1,2,3的红球和三个编号分别为1,2,3的白球,三个红球按其编号分别记为a1 , a2 , a3 , 三个白球按其编号分别记为b1 , b2 , b3 , 袋中的6个球除颜色和编号外没有任何差异,现从袋中一次随机地取出两个球,
(1)列举所有的基本事件,并写出其个数;
(2)规定取出的红球按其编号记分,取出的白球按其编号的2倍记分,取出的两个球的记分之和为一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求直线AC与PB所成角的余弦值;
(3)求二面角A﹣MC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其过点,其长轴的左右两个端点分别为,直线交椭圆于两点.

(1)求椭圆的标准方程;

(2)设直线的斜率分别为,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 ,则使得f(2x)>f(x﹣3)成立的x的取值范围是(
A.(﹣∞,﹣3)
B.(1,+∞)
C.(﹣3,﹣1)
D.(﹣∞,﹣3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的各棱长都相等,中点,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示同一函数的一组是(
A.
B.
C.f(x)=lnx2 , g(x)=2lnx
D.

查看答案和解析>>

同步练习册答案