精英家教网 > 高中数学 > 题目详情

函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y),且f(2)=4,则f(0)+f(-2)=________.

解:因为;f(x)+f(y)=f(x+y),
∴f(0)+f(0)=f(0),?f(0)=0;
又f(2)+f(-2)=f(0)?f(-2)=-f(2)=-4.
∴f(0)+f(-2)=-4.
故答案为:-4.
分析:先结合f(x)+f(y)=f(x+y),求出f(0),并得到f(2)与f(-2)之间的关系,进而得到结论.
点评:本题主要考察抽象函数及其应用.解决本题的关键在于结合f(x)+f(y)=f(x+y),求出f(0),并得到f(2)与f(-2)之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、例5.已知函数f(x)对其定义域内的任意两个数a,b,当a<b时,都有f(a)<f(b),证明:f(x)=0至多有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对任意x∈R,满足f(x)=f(4-x).如果方程f(x)=0恰有2011个实根,则所有这些实根之和为(  )
A、0B、2011C、4022D、8044

查看答案和解析>>

科目:高中数学 来源:江西省重点中学协作体2012届高三第一次联考数学文科试题 题型:013

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f·g)x和(f·g)(x):对任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),则下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)■(选项一样)

查看答案和解析>>

科目:高中数学 来源:江西省重点中学协作体2012届高三第一次联考数学理科试题 题型:013

设f(x),g(x),h(x)是R上的实值函数,如下定义两个函数(f·g)(x)和(f·g)(x):对任意x∈R,(f·g)(x)=f(g(x));(f·g)(x)=f(x)g(x),则下列等式恒成立的是

[  ]
A.

((f·g)·h)(x)=((f·h)·(g·h))(x)

B.

((f·g)·h)(x)=((f·h)·(g·h))(x)

C.

((f·g)·h)(x)=((f·h)·(g·h))(x)

D.

((f·g)·h)(x)=((f·h)·(g·h))(x)

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第05课时):第一章 集合与简易逻辑-简易逻辑(解析版) 题型:解答题

例5.已知函数f(x)对其定义域内的任意两个数a,b,当a<b时,都有f(a)<f(b),证明:f(x)=0至多有一个实根.

查看答案和解析>>

同步练习册答案