精英家教网 > 高中数学 > 题目详情
给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设f(x)=
1
2x+
2
,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为
9
2
2

其中,结论正确的是
 
.(将所有正确结论的序号都写上)
分析:①利用平方差公式及完全平方公式化简已知的等式后得到一个关系式,然后利用余弦定理表示出cosC,把求得的关系式代入即可求出cosC的值,然后根据C的范围,利用特殊角的三角函数值即可求出C的度数;
②利用第1和2点的坐标表示出确定直线的斜率,利用等差数列的前n项和的公式化简得到直线的斜率;然后再利用第3和2点的坐标表示出确定直线的斜率,利用等差数列的前n项和的公式化简得到直线的斜率,判断求得的斜率相等与否,即可得到三点共线与否;
③根据等差数列的性质可知,S10,S20-S10,S30-S20成等差数列,列出2(S20-S10)=S10+(S30-S20),将S10和S20的值代入即可求出S30的值;
④先求出f(x)+f(1-x)的值,然后把所求的式子自变量相加为1的两项结合得到之和为f(x)+f(1-x)的值的9倍,即可求出所求式子的值.
解答:解:①由(a+b+c)(a+b-c)=3ab,得到(a+b)2-c2=3ab,化简得:a2+b2-c2=ab,
则cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2
,根据C∈(0,180°),得到∠C=60°,所以此选项错误;
②因为
S10
10
=
10a1+
10×9
2
d
10
=a1+
9
2
d,同理
S100
100
=a1+
99
2
d,
S110
110
=a1+
109
2
d,
S100
100
-
S10
10
100-10
=
(a1+
99
2
d)-(a1+
9
2
d)  
90
=
d
2
=
S110
110
-
S100
100
110-100
=
(a1+
109
2
d)-(a1+
99
2
d)   
10
=
d
2

所以三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.此选项正确;
③根据等差数列的性质可知,S10,S20-S10,S30-S20成等差数列,
得到:2(S20-S10)=S10+(S30-S20),将S10=30,S20=100,
代入得:2(100-30)=30+(S30-100),解得:S30=210.此选项正确;
④因为f(x)+f(1-x)=
1
2x+
2
+
1
21-x+
2

=
1
2x+
2
+
2x
2 +
2
2x
=
2
2
(2x+
2
)
+
2x
2+
2
2x

=
2
+2x
1 +
2
2x
=
2
+2x
2
(
2
+2x)
=
2
2

则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)=
2
2
×9=
9
2
2
.此选项正确.
所以,正确的结论序号有:②③④.
故答案为:②③④
点评:此题考查学生灵活运用等差数列的性质及余弦定理化简求值,灵活运用等差数列的前n项和的公式化简求值,利用归纳总结找规律的方法求函数的值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案