精英家教网 > 高中数学 > 题目详情

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(1)求an和bn
(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值
相等的概率.

,;(2)

解析试题分析:(1)根据等差数列的首项和公差求通项公式;(2)根据等比数列的首项和公比求通项公式;注意题中限制条件;(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(4)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;
试题解析:解:(1)设{an}的公差为d,{bn}的公比为q.依题意得
S10=10+d=55,b4=q3=8,            2分
解得d=1,q=2,             4分
所以an=n,bn=2n-1.            6分
(2)分别从{an},{bn}的前3项中各随机抽取一项,得到的基本事件有9个:
(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).   8分
符合题意的基本事件有2个:(1,1),(2,2).      10分
故所求的概率P=                   12分
考点:(1)等差数列和等比数列的通项公式;(2)古典概型概率公式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知:等差数列{}中,=14,前10项和.
(Ⅰ)求
(Ⅱ)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,其前项和为,等比数列 的各项均为正数,,公比为,且
(1)求; (2)设数列满足,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:.
(1)求数列的通项公式;
(2)设等比数列的各项均为正数,为其前项和,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前n项和为,且
(1)求数列的通项公式;
(2)设,求数列的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的首项,公比满足,又已知,成等差数列;
求数列的通项;
,求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足:,(≥3),记
(≥3).
(1)求证数列为等差数列,并求通项公式;
(2)设,数列{}的前n项和为,求证:<<.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知等差数列中,若,则      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知数列的通项公式为,则数列{an}是公差为         的等差数列.

查看答案和解析>>

同步练习册答案